计如何证 1 彩 ## (2023年) 授权学科 (学院公章) 名称: 光学工程 代码 *** () () 1. 1 A 3 SCI 1 B 3 SCI 2 2 2 SCI 1 B 1: $\label{eq:control} \text{ory of}$ Infrared Materials & Spectrum Measures and Applications, School of Physics , | 2: | | | | | |----------------------------|--------------------------|---------------------|--------------|------------| | 2. | | | | | | 1 | | | SCI EI | | | Materials & S _I | pectrum Measures and A | Applications, Schoo | ol of Physic | cs , Henan | | 2 | | | | | | & Spectrum M | leasures and Application | ons, School of Phy | sics , Hens | an Normal | | 1
2 | | 1 | SCI EI | (| | 3⋅ | |) | | ` | () 3 1. 19 4 4 11 1 3% Si 2. 4 6 4 1 1.3. 19 7 6 1 2. | | 35 | 36 | 46 | 60 | | | | | |----|----|----|----|----|----|---|----|----| | | | 45 | 59 | | | | | | | 13 | 0 | 4 | 9 | 0 | 12 | 0 | 7 | 13 | | 17 | 1 | 15 | 1 | 0 | 17 | 0 | 4 | 16 | | 23 | 17 | 6 | 0 | 0 | 23 | 0 | 0 | 17 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 53 | 18 | 25 | 10 | 0 | 52 | 0 | 11 | 46 | () 1. - | 1 | | U23A20377 | 262 | - | |---|-----|-------------|-----|---| | 2 | | 62305105 | 30 | - | | 3 | TPV | 62305107 | 30 | - | | 4 | | 12347118 | 18 | - | | 5 | | 12347158 | 18 | - | | 6 | | 12347179 | 18 | - | | 7 | | GZC20230739 | 24 | С | | 8 | | GZC20230728 | 24 | С | | 9 | | 2023M741077 | 8 | 74 | |----|---------|--------------|----|----| | 10 | | 225200810077 | 20 | - | | 11 | GeX2 | 232300421236 | 10 | ı | | 12 | | 232300421389 | 5 | 1 | | 13 | | 232300421388 | 5 | 1 | | 14 | WSe2 PN | 24A140012 | 3 | - | | 15 | BIC | 24A140013 | 3 | - | | 16 | | H2023017 | 20 | | | 17 | | H2023032 | 20 | | | 18 | | H2023021 | 20 | | 2. SCI 73 Photonics Research Tribology international 9 Optics Express Optics Letters Physical Review B 42 | 1 | Enhanced nitrogen electroreduction performance by the reorganization of local coordination environment of supported single atom on N(O)-dual-doped graphene | Nano Research | 2023,16(7):9099-
9106 | | |---|---|----------------------------|--------------------------|--| | 2 | Predicting the directional spectral emissivity for | Tribology
International | 2023, 185, 108557 | | | Carrier transfer in quasi-2D perovskite/MoS? monolayer heterostructure Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative Nanophotonics 2023, 12(24) 4495-4505 2023, 12 (24) 4495-4505 Photonics Research 2023, 11 2 2 290-298 | perovskite/MoS? Nanophotonics 2023, 12(24) 4495- monolayer heterostructure Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management Photonics Research 2023, 11 2 2 290-298 | | rough surfaces polished by sandpaper | | | |--|---|---|--|--------------------|--| | emitters for infrared and laser compatible stealth with thermal management based on dissipative emitters for infrared and laser compatible stealth with thermal management based on dissipative Photonics Research 2023,11 2 290-298 | emitters for infrared and laser compatible stealth with thermal management based on dissipative emitters for infrared and laser compatible stealth with thermal management based on dissipative Photonics Research 2023,11 2 290-298 | 3 | perovskite/MoS? | Nanophotonics | | | dielectrics | | 4 | emitters for infrared and
laser compatible stealth
with thermal management
based on dissipative | Photonics Research | | | | crucible used for emissivity
measurement of molten
material | | | | |----|---|--|-----------------------------|--| | 15 | Stress-induced insulator-to-
metal transition in silicon-
based intermediate band
material | Solar Energy | 2023, 249, 661-666 | | | 16 | Enhancement of transport properties of b-Ga2O3 by hydrogen | International Journal of Hydrogen Energy | 2023,48(82)31837-
31843 | | | 17 | Excitonic Effect Drives Ultrafast Transition in Two- Dimensional Transition Metal Dichalcogenides | Journal of Physical
Chemistry Letters | 2023, 14, 41,
9200 9206 | | | 18 | Soliton molecules and their scattering by a localized PT -symmetric potential in atomic gases | Optics Express | 2023; 31; 11116-
11131 | | | 19 | Radiation temperature
measuring method with
high dynamic range via fast
double-exposure image
fusion | Infrared Physics & Technology | 2023,130,104625 | | | 20 | Optimizing MRT data processing via comparative analysis of SA and PSO algorithms: a simulation and numerical study | Optics Express | 2023,31(13):20905-
20918 | | | 21 | Data processing for simultaneous inversion of emissivity and temperature using improved CABCSMA and target-to-best DE algorithms in multispectral radiation thermometry (MRT) | Optics Express | 2023,31(20):32684-
32703 | | | 22 | Near-infrared normal spectral emissivity of molten Fe-Ni alloys by electromagnetic heating | Infrared Physics & Technology | 2023 130
104574 | | | 23 | A Mo/Si multilayer film
based selective thermal
emitter for high-
temperature infrared stealth
application | Infrared Physics & Technology | 2023,131
104643 | | | 24 | High-performance near-
field thermophotovoltaics
based on CaCO3-
Graphene/InSb
heterostructure | Physical Review
Applied | 2023 20 064015 | | | 25 | Monitoring viscosity in live
cells based on the excited-
state absorption signal in
transient absorption
spectroscopy | Applied Physics
Letters | 2023, 122, 073701 | | | 26 | Unipolar barriers in near-
broken-gap heterostructures | Applied Physics
Letters | 2023, 122, 043505 | | | | for high-performance selfpowered photodetectors | | | | |----|---|--------------------------------|------------------------------|--| | 27 | Linear and symmetric synaptic weight update characteristics in van der Waals heterostructure transistors based on 2D In4/3P2Se6 barrier layer | Applied Physics
Letters | 2023, 123, 141902 | | | 28 | Self-powered broadband
photodetector based on a
monolayer InSe p-i-n
homojunction | Physical Review
Applied | 2023,19(1):014039 | | | 29 | Strong interlayer coupling
in p-Te/n-CdSe van der
Waals heterojunction for
self-powered
photodetectors with fast
speed and high responsivity | Optics Express | 2023, 31(12),
19804-19817 | | | 30 | Self-hybridized exciton polaritons in thin films of transition metal dichalcogenides for narrowband perfect absorption | Optics Express | 2023 31 11
18545-18554 | | | 31 | Merging bound states in the continuum in all-dielectric metasurfaces for ultrahigh-Q resonances | Optics Letters | 2023 48 19
5045-5048 | | | 32 | Mirror-coupled toroidal dipole bound states in the continuum for tunable narrowband perfect absorption | Optics and Laser
Technology | 2024 169 :110144 | | | 33 | Approach to multispectral thermometry with Planck formula and hybrid metaheuristic optimization algorithm | Optics Express | 2023, 21(31):
34169 | | | 34 | The measurement and modeling investigation on the BRDF of brass under variable temperature | Infrared Physics & Technology | 2023, 128: 104505 | | variable temperature Improving the measurement accuracy of directional spectral emissivity at large | | sensing | | | | |----|--|--------------------|----------------|--| | 38 | Tuning electronic and optical properties of BlueP/MoSe2 van der Waals heterostructures by strain and external electric field | Results In Physics | 2023,44:106035 | | () ## 1. | | 4000 | |----|------| | 5 | | | M2 | 2600 | 2. | | | 100 | |--|----|-----| 5 | | | 20 | () | T | |----------| 2023 12 8 96 1. + 2. + 3. () 1 16 14 2 2 2 4 1 3 5 1 1 10 1 | | / | | | | | |------------|----|---|---|---|--| | 11_B000001 | 36 | 2 | • | ' | | | | | | | | 5 | | |----------|----|---------|---|-------------|---|---| | | b. | | | 10 | | | | | 0. | | | | 2 | | | | | _ | | | | | | | | 5 | | | | | | | a. | | | | | | | 2 | 3 | | | SCI
(SCI |) | | | <i>L</i> | 1 | | | (SCI |) | | | | b. | | | | | | | | 2 | CSSCI | (|) | | 1 | | | 2 | 1 | | | | • | | | | 5 | | | 3 | | | | 2 | | | | | | | | 1 | 1 CSSCI | a. | | | | | | | | 2 | | | | 5 | | a. | 1 | | | | | | |----|-------|-----|---|-----|-----| | 20 | | | | | | | 2 | | | | | | | | 100 | | | | | | | | | | | | | 1 | | | | | | | | | | | | SCI | | 4 | | | 3 | | | | 2 | | | | | | | | 2 (| SCI |) | SCI | 2 | | | 10 | | 7 | | 3 | | | 2 | | | | 1 | | | | 10 | | | | | 3. | | | | | | | 1 | | | | | 2 | | | SCI) | SCI | 2 | | | | 2 | | | | | | | 3 | | | | 10 | | 4. 5. () 1. 10% 4 2 80% SCI 1 SCI 2 SCI 1 1. 2. 20% 10% 30% 3. 7 5 2 () , 20% 10% 30% 35% 15% 1 50% (, 1 A 3 SCI 1 SCI В 3 2 2 2 SCI 1 В 1 SCI EI Materials & Spectrum Measures and Applications, School of Physics , Henan () 2 & Spectrum Measures and Applications, School of Physics , Henan Normal ((() 2011 () 1. 2. () 3. : 80% 2023 2 24 5 2 3 5 6 3 100% | 2023 | 0 | 2 | 3 | 0 | 0 | 5 | 0 | 6 | 3 | 0 | 0 | 5 | 24 | |------|---|---|---|---|---|---|---|---|---|---|---|---|----| | 2023 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | () 60 1 32 2 50 1 1 23 2309 3 55 5 () 2. LED LED LED LED 1000 3. 30% 700 300 1000