计如何证 1 彩

(2023年)

授权学科 (学院公章)

名称: 光学工程

代码 ***

()

()

1.

1

A 3 SCI 1

B 3 SCI 2

2

2 SCI 1

B 1:

 $\label{eq:control} \text{ory of}$ Infrared Materials & Spectrum Measures and Applications, School of Physics ,

2:				
2.				
1			SCI EI	
Materials & S _I	pectrum Measures and A	Applications, Schoo	ol of Physic	cs , Henan
2				
& Spectrum M	leasures and Application	ons, School of Phy	sics , Hens	an Normal
1 2		1	SCI EI	(
3⋅)		`

()

3

1.

19 4 4

11 1

3%

Si

2.

4 6 4 1

1.3.

19
 7
 6
 1

2.

	35	36	46	60				
		45	59					
13	0	4	9	0	12	0	7	13
17	1	15	1	0	17	0	4	16
23	17	6	0	0	23	0	0	17
0	0	0	0	0	0	0	0	0
53	18	25	10	0	52	0	11	46

()

1.

-

1		U23A20377	262	-
2		62305105	30	-
3	TPV	62305107	30	-
4		12347118	18	-
5		12347158	18	-
6		12347179	18	-
7		GZC20230739	24	С
8		GZC20230728	24	С

9		2023M741077	8	74
10		225200810077	20	-
11	GeX2	232300421236	10	ı
12		232300421389	5	1
13		232300421388	5	1
14	WSe2 PN	24A140012	3	-
15	BIC	24A140013	3	-
16		H2023017	20	
17		H2023032	20	
18		H2023021	20	

2.

SCI 73 Photonics Research
Tribology international 9 Optics Express Optics Letters
Physical Review B 42

1	Enhanced nitrogen electroreduction performance by the reorganization of local coordination environment of supported single atom on N(O)-dual-doped graphene	Nano Research	2023,16(7):9099- 9106	
2	Predicting the directional spectral emissivity for	Tribology International	2023, 185, 108557	

Carrier transfer in quasi-2D perovskite/MoS? monolayer heterostructure Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative Nanophotonics 2023, 12(24) 4495-4505 2023, 12 (24) 4495-4505 Photonics Research 2023, 11 2 2 290-298	perovskite/MoS? Nanophotonics 2023, 12(24) 4495- monolayer heterostructure Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management Photonics Research 2023, 11 2 2 290-298		rough surfaces polished by sandpaper		
emitters for infrared and laser compatible stealth with thermal management based on dissipative emitters for infrared and laser compatible stealth with thermal management based on dissipative Photonics Research 2023,11 2 290-298	emitters for infrared and laser compatible stealth with thermal management based on dissipative emitters for infrared and laser compatible stealth with thermal management based on dissipative Photonics Research 2023,11 2 290-298	3	perovskite/MoS?	Nanophotonics	
dielectrics		4	emitters for infrared and laser compatible stealth with thermal management based on dissipative	Photonics Research	

	crucible used for emissivity measurement of molten material			
15	Stress-induced insulator-to- metal transition in silicon- based intermediate band material	Solar Energy	2023, 249, 661-666	
16	Enhancement of transport properties of b-Ga2O3 by hydrogen	International Journal of Hydrogen Energy	2023,48(82)31837- 31843	
17	Excitonic Effect Drives Ultrafast Transition in Two- Dimensional Transition Metal Dichalcogenides	Journal of Physical Chemistry Letters	2023, 14, 41, 9200 9206	
18	Soliton molecules and their scattering by a localized PT -symmetric potential in atomic gases	Optics Express	2023; 31; 11116- 11131	
19	Radiation temperature measuring method with high dynamic range via fast double-exposure image fusion	Infrared Physics & Technology	2023,130,104625	
20	Optimizing MRT data processing via comparative analysis of SA and PSO algorithms: a simulation and numerical study	Optics Express	2023,31(13):20905- 20918	
21	Data processing for simultaneous inversion of emissivity and temperature using improved CABCSMA and target-to-best DE algorithms in multispectral radiation thermometry (MRT)	Optics Express	2023,31(20):32684- 32703	
22	Near-infrared normal spectral emissivity of molten Fe-Ni alloys by electromagnetic heating	Infrared Physics & Technology	2023 130 104574	
23	A Mo/Si multilayer film based selective thermal emitter for high- temperature infrared stealth application	Infrared Physics & Technology	2023,131 104643	
24	High-performance near- field thermophotovoltaics based on CaCO3- Graphene/InSb heterostructure	Physical Review Applied	2023 20 064015	
25	Monitoring viscosity in live cells based on the excited- state absorption signal in transient absorption spectroscopy	Applied Physics Letters	2023, 122, 073701	
26	Unipolar barriers in near- broken-gap heterostructures	Applied Physics Letters	2023, 122, 043505	

	for high-performance selfpowered photodetectors			
27	Linear and symmetric synaptic weight update characteristics in van der Waals heterostructure transistors based on 2D In4/3P2Se6 barrier layer	Applied Physics Letters	2023, 123, 141902	
28	Self-powered broadband photodetector based on a monolayer InSe p-i-n homojunction	Physical Review Applied	2023,19(1):014039	
29	Strong interlayer coupling in p-Te/n-CdSe van der Waals heterojunction for self-powered photodetectors with fast speed and high responsivity	Optics Express	2023, 31(12), 19804-19817	
30	Self-hybridized exciton polaritons in thin films of transition metal dichalcogenides for narrowband perfect absorption	Optics Express	2023 31 11 18545-18554	
31	Merging bound states in the continuum in all-dielectric metasurfaces for ultrahigh-Q resonances	Optics Letters	2023 48 19 5045-5048	
32	Mirror-coupled toroidal dipole bound states in the continuum for tunable narrowband perfect absorption	Optics and Laser Technology	2024 169 :110144	
33	Approach to multispectral thermometry with Planck formula and hybrid metaheuristic optimization algorithm	Optics Express	2023, 21(31): 34169	
34	The measurement and modeling investigation on the BRDF of brass under variable temperature	Infrared Physics & Technology	2023, 128: 104505	

variable temperature
Improving the measurement
accuracy of directional
spectral emissivity at large

	sensing			
38	Tuning electronic and optical properties of BlueP/MoSe2 van der Waals heterostructures by strain and external electric field	Results In Physics	2023,44:106035	

()

1.

	4000
5	
M2	2600

2.

		100
		5
	20	

()

T

2023 12 8 96

1. +

2. +

3. ()

1 16 14 2

2 2 4

1 3 5

1 1

10 1

	/				
11_B000001	36	2	•	'	

					5	
	b.			10		
	0.				2	
		_				
		5				
	a.					
2	3			SCI (SCI)	
<i>L</i>	1			(SCI)	
	b.					
	2	CSSCI	()		1
	2	1				•
		5			3	
	2					
	1	1 CSSCI				
	a.					
	2				5	

a.

1					
20					
2					
	100				
1					
					SCI
4			3		
2					
	2 (SCI)	SCI	2
	10		7		3
	2				1
		10			
3.					
1					2
	SCI)	SCI	2		
2					
3				10	

4.

5.

()

1.

10% 4 2

80% SCI 1
SCI 2
SCI 1

1.
2.
20% 10% 30%
3.
7 5 2

()

,

20%

10% 30%

35%

15% 1 50%

(

,

1

A 3 SCI 1

SCI В 3 2 2 2 SCI 1 В 1 SCI EI Materials & Spectrum Measures and Applications, School of Physics , Henan () 2

& Spectrum Measures and Applications, School of Physics , Henan Normal (

(

()

2011

()

1.

2.

()

3. :

80%

2023 2

24 5 2

3 5 6 3

100%

2023	0	2	3	0	0	5	0	6	3	0	0	5	24
2023	0	2	0	0	0	0	0	0	0	0	0	0	2

()

60

1

32

2

50 1 1 23 2309

3

55 5

()

2. LED

LED

LED

LED 1000

3.

30%

700

300 1000

